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Abstract. The dynamic optimization is a useful mathematical tool to find the optimal solution of
problems where a significant variability with the time of the present variables is observed. The
solution to these problems may become difficult in some cases, such as problems with temporal
constraints or changes in the solution profile over time. In such cases, both the quality of the
solution and the computational cost can be improved. This work aims to develop an adaptive
numerical method, based on wavelets analysis, to solve dynamic optimization problems. The
method was developed in the Python programming language, using the Gekko package. Two
cases of dynamic optimization were solved and the results showed that the computational cost
could be significantly reduced.
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1. INTRODUCTION

Dynamic optimization issues are of importance both industrially and scientifically. Algo-
rithms to solve such problems, in specific, direct methods, usually require significant compu-
tational burden, mainly because the discretization level needed to capture the discontinuities of
the model can be very high. In this sense, large-scale optimization problems may be difficult to
be solved (Logist et al., 2012; Santos et al., 2014).

This paper seeks new implementations of numerical techniques for solving problems using
the direct sequential method with the aid of the wavelets transform. The method is based on
the works of Binder et al. (2000), Hartwich et al. (2010) and Assasa and Marquardt (2014) that
used the adaptive wavelets for solving dynamic optimization problems.

This work aims to contribute with a different strategy in adaptive method application using
the wavelets transform. The main contribution is the application of the wavelets to calculate
the optimal discretization of the dynamic optimization problem in a single step (insertion of
points), unlike the one proposed by Assassa and Marquardt (2014) that use an algorithm of
insertion and elimination of points two steps). The main advantage of this methodology is the
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increasing discretization of the discretization mesh, without the need to eliminate unnecessary
points, according to the criterion adopted. Another contribution was the implementation of the
method in Python software, through the computational package Gekko. To date there are no
adaptive wavelet methods applied in the Python language.

This paper is organized as follows. In Section 2, we present a general formulation of dy-
namic optimization problems. Section 3 a brief introduction to wavelets analysis. Section 4
presents the adaptive algorithm and Section 5 compares adaptive and equidistant grids. Finally,
in Section 6, concludes the paper by summarizing the results and achieve objectives.

2. GENERAL DYNAMIC OPTIMIZATION PROBLEM

A class of typical dynamic optimization problems of chemical engineer can be formulated
as follows:

min
u(t),p,tf

[ ∫ tf

t0

J0(x(t), y(t), u(t), p, t)dt+ J1(x(tf ), y(tf ), u(f ), p, tf )

]
(1)

s.t. f [x(t);x(t), y(t), u(t), p, t] = 0, x(t0) = x0
g[x(t);x(t), y(t), u(t), p, t] ≤ 0
h[x(t), y(t), u(t), p, t] = 0
e[x(tf ), y(tf ), u(tf ), p, tf ] = 0
x(t) ∈ [xL, xU ], y(t) ∈ [yL, yU ], u(t) ∈ [uL, uU ]

Where J is the objective functional, f represents the differential-algebraic equations (DAEs)
system, g(t), h(t) and e(tf ) are, respectively, the inequality, the equality and endpoint con-
straints. p refers to time-independent parameters, u(t) are the control variables, x(t) and y(t)
are the differential, and the algebraic variables, respectively. The index L denotes lower bound
and the index U , upper bound.

Each component of u(t) is parameterized whithin the domain t ∈ [t0, tf ] inn direcy sequen-
tial methods. Dividing this domain of optimization is a convenient way to parameterize control
variable. In ns ≥ 1, ns is a control stages, t = [t1, ..., tns ]. A polynomial is used on each time
interval as:

u(t) = %(t, υ̃) (2)

%(t, υ̃) is a polynomial with the coefficientes υ̃ = {υ1, ..., υns}. This work considers the control
variable to be constant in the stages, so the algorithm calculates a constant u(t) in each stage
υi = u(ti), i = 1, ..., ns.

3. WAVELETS

Wavelets are advantageous in the analysis of non-stationary signals. Its application can be
encountered in several areas such as engineering, physics, mathematics, among others (Santos
et al., 2014).

Basically, wavelets are a family if functions derived from one single function defined as the
mother wavelet, ψ:

ψn,m(t) = 2n/2ψ(2nt−m), m = 0, . . . , 2n − 1, n = 0, . . . , K − 1 (3)
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The term denoting the decomposition level of the wavelet is n, the integral index, K is the
maximum n value and m refers to the translation of the index at a specific level.

The control variable function transformation, u(t), into the wavelet domain as:

dn,m = 〈u(t), ψm,n(t)〉 (4)

where dn,m is a scalar wavelet detail which stores the function characteristics in the indices, this
equation shows the inner product between u(t) and ψm,n(t) in Euclidian space, and the function
u(t) is defined:

u(t) = ℘(t, ṽ), ṽ = v1, v2, . . . , vns−1 , vns (5)

The Equation 5 can be approximated by the wavelet expansion:

u(t) ≈ c0,0 · φ0,0(t) +
k∑

n=0

−1
2n−1∑
m=0

dn,m · ψn,m(t) (6)

c0,0 is the approximated coefficient and the other wavelet form, φ0,0(t), is the scalar function.
The wavelets presented in this definition are quite frequently used to solve different prob-

lems. In this work, the objective is to detect system discontinuities, in these cases, the short
wavelets are more effective, so the one used as the Haar wavelet and is written as:

ψ(t) =


1, t ∈ [0, 1/2)
−1, t ∈ [1/2, 1)
0, otherwise

(7)

and

φ(t) =

{
1, t ∈ [0, 1)
0, otherwise (8)

The algorithm used in Python allows to calculate d̃ from υ̃ by using:

d̃ = ṽ · ψ (9)

4. ADAPTIVE WAVELET ALGORITHM

The proposed algorithm uses the sequential dynamic optimization solution model, using
the Gekko free software, which solves constrained nonlinear optimization problems by provid-
ing five solvers: APOPT (Advanced Process OPTimizer), BPOPT (BIM-based Performance
Optimization), IPOPT (Interior Point OPTimizer), MINOS and SNOPT (Sparse Nonlinear OP-
Timizer) (Beal et al., 2018). The IPOPT was the solver chosen for the resolution of the cases
proposed in this work. The choice of this solver was based on its effectiveness in solving high-
dimension dynamic optimization problems resultant of numerical approximation.

Other free software, PyWavelets (Lee et al., 2006), was used in the application of the wavelet
transform, this paper uses the discrete wavelet transform (DWT), which returns the values of
the high and low-frequency coefficients.

In the algorithm, each iteration performs the signal analysis of the control variable resulted
from the dynamic optimization process. The resulted coefficients after teh wavelet transform
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represnets the high frequency part of the signal. Thus, the coefficients that have values greater
than the correspoding mean value are selected to be refined. In this way, a new point is added
in the middle of the selected stage to the optimization be computed in he next iteration.

All tests are performed on PC with intel R© CoreTM i7i7-8650U Processor (8M Cache, up to
4.20 GHz).

5. CASE STUDIES

In this paper, two case studies are presented and the results are demonstrated in the following
sections. In each case, the adaptive wavelets algorithm is compared with the conventional
method, using equidistant discretization.

5.1 Case Study I: scalar optimal control problem (Chachuat, 2007):

In this example the goal is miniming the objective function represented by Equation 10,
according to the time horizon t ∈ [0, 2] with the initial conditions x1(0) = x2(0) = 1. The
mathematical model is written as:

J =

∫ 2

0

1

2
[x1(t)]

2 (10)

s.t. ẋ1(t) = x2(t) + u(t)
ẋ2(t) = −u(t)
x1(2) = x2(2) = 0
− 10 ≤ u(t) ≤ 10

Table 1 shows the results obtained from the solution of case I in which the wavelet method
is indicated as ”Method I” and the method without the application of wavelets, only using
equidistant time grid sizes is represented as ”Method II”. The ns is the number of stages, time
is the solution time and J is objective function value.

Figure 1- Optimal control profiles for case I.

Anais do XXI ENMC – Encontro Nacional de Modelagem Computacional e IX ECTM – Encontro de Ciências e Tecnologia de Materiais,
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Figure 2- Evolution of the time grids for case I.

Table 1- Test results for fedbatch fermentor problem

Method I ns Time (s) J Method II ns Time (s) J
8 0.05 5.32 8 0.05 5.32
9 0.06 4.96 16 0.12 4.93

12 0.09 4.80 32 0.38 4.75
14 0.11 4.70 64 1.89 4.67
17 0.14 4.65 128 12.84 4.63

According to Table 1, the best performance was obtained by the use of the adaptive method
resulting in a computation time of 0.14 seconds in 17 stages compared to the Method II which
resulted in 12.84 seconds and 128 stages. This corresponds to a reduction of 98.91% regarding
the solution time. Notice that, maintaining the quality of the solution, the difference between
the objective function values is only 0.43%.

The evaluation of time grids in an adaptative method is present in the Figure 2 and the
Figure 1 represents the optimal control for the proposed case. It can be observed in Figure 1
that the profile of the control variable has some discontinuities. An explanation for this result is
the low sensitivity of the objective function to the possible discontinuities located in the control
variables, causing the optimization algorithm to reach local convergence. However, as shown in
Table 1, it is noted that the resulting objective function was satisfactory, within the established
error criterion.

5.2 Case Study II: fed-batch fermentor problem (Balsa-Canto et al., 20001)

This problem aims to obtain the maximum concentration of penicillin produced in an feed-
batch reactor, with feed rate being the manipulated variable of the optimization problem. The
process model is written as:

J = x2(tf )x4(tf ) (11)
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s.t. ẋ1 = h1x1 − x1

500x4
u

ẋ2 = h2x1 − 0.01x2 − x2

500x4
u

ẋ3 = −h1x1

0.47
− h2x1

1.2
− 0.029x3x1

0.0001+x3
+
(
1− x3

500

)
u
x4

ẋ4 =
u
500

h1 =
0.11x3

0.006x1+x3

h2 =
0.0055x3

0.0001+x3(1+10x3)

0 ≤ x1 ≤ 40
0 ≤ x3 ≤ 25
0 ≤ x4 ≤ 10
0 ≤ u ≤ 50

where the optimization domain is t ∈ [0, tf ], with terminal time tf equals to 132 h. In the model,
J is the objective function to be maximized, u is the feed rate, the biomass concentration,
penicillin and substrate are defined as x1, x2 and x3 respectively in grams per liter and the
reactor volume in liters is the variable x4.

The results of the optimization problem is summarized in Table 2. As observed, the fed-
batch fermentor problem with proposed method (”Method I”) resulted in J = 87.95, and 2.13
seconds. On the other hand, these correponding values for the Method-II presented an objective
function value of 87.80 and a computational time of 2254.77 seconds. The table also shows that
for Method-I only 14 stages of discretization were required, whereas for Method-II, 128 stages
were used.

The Figure 3 represents the graphical behavior of the control variable in time and the figure
4 the time grid in each iteration.

Figure 3- Optimal control profiles for case II.
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Figure 4- Evolution of the time grids for case II.

Table 2- Test results for fedbatch fermentor problem

Method I ns Time (s) J Method II ns Time (s) J
8 0.36 86.85 8 0.34 86.85

10 0.58 87.83 16 1.98 87.60
11 1.11 87.89 32 19.68 87.53
12 1.24 87.90 64 176.01 87.72
14 2.13 87.95 128 2254.77 87.80

6. CONCLUSIONS

The adaptive wavelets method proposed for a refinement in the grid number showed a satis-
factory result, meeting expectations, saving computing time and maintaining similar or improv-
ing the response quality of the two cases solved. It was possible to verify that the application of
the wavelets is useful to optimize the discretization trajectory in the sequential method. In both
analyzed cases, there was a significant reduction of the computational cost for a given solution.

It should be noted that improvements can still be realized in the method, such as the incor-
poration of new wavelet functions, as well as deterministic methods to improve the selection
procedure of wavelet coefficients.
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