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Abstract. This work consists in the presentation of a computational model to study normal and
pathological behavior of red blood cells in slow transient processes that can not be accompa-
nied by pure particle methods (the required time steps are very small). The basic model, inspired
by the best models currently available, considers the cytoskeleton as a discrete non-linear elas-
tic structure. The novelty of the proposed work, which will extend the simulation times and the
robustness of the code, is to couple this skeleton with continuum models instead of the more
common discrete models (molecular dynamics, particle methods) of the lipid membrane. The
interaction of the solid cytoskeleton with the membrane, which is a two-dimensional fluid, will
be done through adhesion forces adapting efficient solid-solid adhesion algorithms. The con-
tinuous treatment of the fluid parts is well justified by scale arguments and leads to much more
stable and precise numerical problems when, as is the case, the size of the molecules (0.3nm)
is much smaller than the overall size (' 8000nm)

Keywords: Red blood cell, Cytoskeleton, Lipid bilayer, Ahesion problem, Modeling of biologi-
cal systems

INTRODUCTION

The whole volume of RBCs inside de human circolatory system constitues around the 35−
50% of the blood’s one. This means that the peculiar characterists of the RBC highly affects the
byological funtion of the blood delivering oxygen. Ulker et al. (2009) in a recent study have
also shown that the exposure of RBCs to physiological shear stress allows the synthesis of the
nitric oxide enzymatically, contribuiting so to the regulation of vascular tonus. Moreover, the
hig concentration in the blood of RBCs has direct consequence in the haemodynamics (Popel
& Johnson, 2005) (Mchedlishvili & Maeda, 2001).

In the human body an erythrocyte consists in a biocave disk shape, flattened and depressen
in the middle, with a cross section of dumbbell shape (Li-Guo et al., 2010). In an undeformed
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state, its diameter is 6 − 8µm on the circular discoid plane and the thickness on the bIn con-
sequence, tiocave radial plane has an average value of 2µm. The average volume of a RBC is
90µm3 and the surface area of about 136µm2 (Ju et al., 2015). While in blood vessels with a
diameter larger than 200µm (like the arteries) we can neglet the size effect of the RBCs and
model the blood as a homogenneus non-Newtonian fluid, on the other hand, when we con-
sider the circulation inside vessels with smaller diameter (arterioles, venules and capillares),
i.e. when the vessel’s internal diameter is comparable with the size of the RBCs, to consider
the suspension and the morphological evolution of the erytrocite becomes pivotal. In this sec-
ond case, the RBC can pass through small capillares whose inner diameter are smaller then the
cells ones, inducing the cell to change its shape form the bioncave original one to a bullet or
a paracadute (for then recover its initial shape). It is therefore fundamental, in order to under-
stand the blood flow and its functions in microcirculation, to face up to the modeling of a RBC.
Usually, in the life-science research, bulk methods for sumilation considering million of cells
are normally performed for studying the cell behavoiur because they are simple, avalaible and
well estabilisched (Svahn & Berg, 2007). However cells in a similar environment can show
heterogeneous behaviour within a population and potentially significant cellular behaviour may
not be captured by bulk techniques (Bao et al., 2014). De facto, single-cell studies are impor-
tant for understanding higher-level systemsm such as tissues and organisms, and for developing
therapeutic approaches (Carlo & Lee, 2006). This work aims to contribute within the single-cell
studies.

A RBC is a nucleus-free cell that basically consists of a fluid-like lipid bilayer contributing
to the bending resistance and an attached spectrin network (cytoskeleton) that helps maintain
cell shape during motion. Transmembrane proteins connect the lipid bilayer and spectrin com-
ponents. The current state of the art is that models must account for each of two components
separately to accurately mimic the physics of the RBC. A computational model that separately
accounts for each component has recently proved useful in the analysis of healthy and diseased
RBCs (Li et al., 2014; Chang et al., 2017). The network submodel consists of junctions (nodes)
that are joined by springs that obey a worm-like-chain nonlinear law. The lipid bilayer submodel
consists of a surface of Dissipative-Particle-Dynamics (DPD) particles endowed with bending
energy, elastic and viscous interactions, and thermal fluctuations. The cytoskeleton-bilayer in-
teraction in the aforementioned model consists of a short-range force between the nodes of the
network and the bilayer particles. This force is attractive in the direction normal to the bilayer
surface, and viscous-friction-like in the tangential one. DPD is a particle-based method, quite
similar to coarse grained molecular dynamics, in that each particle represents a molecule or a
group of molecules. When the number of molecules is very large continuum models are more
accurate and efficient than particle-based models. The typical length of a spectrin filament is
about 70 nm, leading to about 105 edges in an actual RBC cytoskeleton. The typical number of
lipid molecules in the bilayer of an RBC, on the other hand, is about 700 million.

In our new RBC modelling approach, we propose a new two-component model in which the
cytoskeleton is kept discrete as before, but the lipid bilayer is modeled as a continuous surface
fluid. In particular, we adopt the viscous liquid-shell model with Canham-Helfrich bending
energy described by Arroyo (2010). Its discretization follow that of Rodrigues et al. (2015),
which is the first one with sufficient generality to accomplish this task. The two components are
coupled by adhesion forces that mimic the attachment of the cytoskeleton nodes to the bilayer
integral proteins.
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MATHEMATICAL FORMULATION

We can consider a red blood cell as a mechanical system that, from the kinematical point
of view, has a configuration described by the state X of the cytoskeleton and the state Y of
the membrane. In Figure 1 we show a scheme of a RBC depicting the two components of the
model. The configuration X represents a state of the cytoskeleton, which in our model is a set
of NX balls of radius R representing the junctional complexes of the cytoskeleton. In this way,
appropriate coordinates for X are the positions of the nodes of the cytoskeleton model, which
are the centers of the aforementioned balls. These coordinates will be denoted by {Xj}NX

j=1.

Figure 1- Skecth of the problem.

Similarly, Y is a configuration of the lipid membrane, which in the exact problem is an
element of an infinite-dimensional manifold of possible membrane shapes. For numerical pur-
poses, however, it is always modeled as a finite-dimensional manifold spanned by generalized
coordinates. In our case we adopt parameterizations that are defined by the positions of NY

points, the nodes of the membrane model. The coordinates of any configuration Y are thus
{Y i}NY

i=1. From these coordinates the geometrical position of the membrane,

Γ(Y) = {y ∈ R3 | y belongs to the membrane surface } , (1)

can be reconstructed.
The energy of the proposed two-component system E (that clearly depends on X and Y) is

decomposed into the sum

E(X ,Y) = EX(X ) + EY (Y) + EXY (X ,Y) (2)

where EX is the intrinsic skeleton energy, EY the intrinsic membrane energy, and EXY the inter-
action energy between the cysoskeleton and the membrane.

Consequently, the instantaneous motion of the cytoskeleton is described by rates of change
of X , which can formally be expressed as

U =
dX
dt

, (3)

which in practice means that the velocity of the cytoskeleton nodes obeys

U j =
dXj

dt
. (4)

The instantaneous motion of the membrane particles, on the other side, is characterized by the
rates of change of Y , as follow

W =
dY
dt

. (5)
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This means that the tracking of the surface is Lagrangian. In particular, in the discrete case, the
velocity of the i-th membrane node,

W i =
dY i

dt
, (6)

coincides with that of the lipid particle at Y i(t). In this latter sentence “lipid particle” is to be
understood not as a lipid molecule but as a small but macroscopic chunk of lipid material, in
the spirit of Continuum Mechanics.

We consider as starting point for the mathematical formulation of the problem the principle
of virtual work demanding that in our case the work done by the energies yet defined for an
admissible virtual variation the configuration variables and the work done by the dissipative
forces is ugual to the work done by the external forces of the system (Lanczos, 1970). The
corresponding expression can be formally written as

dXE(X ,Y) • δX + dY E(X ,Y) • δ Y +D(X ,Y ,U ,W) • (δX , δ Y) = (7)
= FX • δX + FY • δ Y

where

- dXE(X ,Y)• δX is the infinitesimal change δE , when the state of the system is perturbed
from (X ,Y) to (X + δX ,Y),

- the bullet • is an appropriate duality product which will detailed later,

- dY E(X ,Y) • δ Y is the infinitesimal change δE , when the state of the system is perturbed
from (X ,Y) to (X ,Y + δ Y),

- D(X ,Y ,U ,W) • (δX , δ Y) is the dissipation of the system (i.e., the work of its internal
dissipative forces), when the system is perturbed by (δX , δY), and,

- the right-hand side is the virtual work of external forces.

Explicit expressions for the several terms in (7) can be derived by the mathematical model-
ing of each of the two components (bilayer, cytoskeleton) of the system, and of their interaction,
as brifly presented described below.

Lipid bilayer model

Being Γ the average surface of the bilayer at time t, we define u and σ as the velocity and
the surface tension of the bilayer respectively. Also let H be an average curvature of Γ, ň
the normal vector and κ the mean curvature vector, defined as κ = H ň. We also need the
tangential projector P = I − ň ⊗ ň. The tangential gradient ∇Γ is the operator defined as
∇Γf = P∇f̂ , where f : Γ → R is any function and f̂ an arbitrary extension of f to an open
neighborhood of Γ ⊂ R3.

In the currently available model the interaction with the inner and outer fluid is simplified.
The only force the fluid exerted on the bilayer comes from a pressure difference uniform p.

With these definitions, the viscous dynamics of the bilayer lipidic (Scriven, 1960; Rahimi
% Arroyo, 2012), considering the energy of bending, is given by the unique fields u, σ, κ and
the only scalar p ∈ R such that
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∫
Γ

2µDΓu : DΓv − p
∫

Γ

v · ň +

∫
Γ

σ∇Γ · v +

+cCH

∫
Γ

[
(I− 2P)∇Γκ : ∇Γv +

1

2
(∇Γ · κ) (∇Γ · v)

]
=

∫
Γ

fΓ · v (8)∫
Γ

ξ∇Γ · u = 0 (9)∫
Γ

κ · ζ =

∫
Γ

P : ∇Γζ (10)∫
Γ

u · ň = 0 (11)

∀ (v, ξ, ζ) ∈ V×Q×K, where V and K are essencially (H1(Γ))3 andQ = L2(Γ). The surface
viscosity is denoted by µ and the forces field fΓ : Γ → R3 includes all the forces derived from
the interaction with the cytoskeleton and external interactions. The term containing the constant
cCH comes from the energy of Canham-Helfrich (Canham, 1970; Helfrich, 1973; Seguin & Fried,
2014), i.e.,

Ebend =
cCH

2

∫
Γ

H2 =
cCH

2

∫
Γ

‖κ‖2 . (12)

The methodology to solve this part of the bi-component model arises by the discretization
of the above variational formulation in space and in time. This has already been developed and
was recently published (Rodrigues et al., 2015). It incorporates automatic adjustment of the
time step and surface remeshing (Löhner, 1996). The theoretical framework comes from the
works by Dziuk, Elliot, and others (Bonito et al., 2010; Dziuk & Elliott, 2006; Dziuk & Elliott,
2013; Rusu, 2005).

In this new approach we incorporate the interaction with the cyto-skeleton, as the the model
described below.

Cytoskeleton model

The cytoskeleton will be treated by trying to follow the nature of its components, basically a
spectrin fiber special joints (Gratzer, 1981). The mesh is considered as a set of nodes (junctions)
joined by molecular chains that are usually represented by Worm-Like-Chains (Hansen et al.,
1996; Fedosov et al., 2010; Fedosov et al., 2011).

The typical length of a spectrin filament is 70 nm, leading to about 105 edges in a real
erythrocyte cyto-skeleton. This number, however large, is numerically treatable and also there
are coarse-grained models that can be applied to save computing effort (Pivkin & Karniadakis,
2008). This is very different for the lipid bilayer, in which the number of particles (phospho-
lipids) is approximately 700 million. The novelty of the project consists of taking advantage of
the continuum limit for the lipid bilayer, keeping the cyto-skeleton discrete.

The elastic energy spectrin mesh is described by

V =
∑
j

[
kBT`m (3x2

j − 2x3
j)

4p(1− xj)
+

kp

(n− 1)`n−1
j

]
(13)
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where `j is the filament length j, ellm is the maximum extension of these filaments, xj =
ellj/ ellm, p is the length of persistence, kBT is the unit of energy and n and kp parameters.
This results in a macroscopic shear modulus (for an hexagonal cell) of (see (Fedosov et al.,
2011))

G0 =

√
3 kBT

4p`mx0

(
x0

2(1− x0)3
− 1

4(1− x0)2
+

1

4

)
+

√
3kp(n+ 1)

4 `n+1
0

(14)

with `0 is the equilibrium spacing and x0 = `0/`m.
The integration of the cytoskeleton equations will be carried out using classical techniques

of computational solids mechanics.

Interaction Model

The interaction between the bilayer and the cytoskeleton will be modeled as adhesion of
soft bodies, adapting the formulation of Sauer (2012) based on the models and available data
(Freund & Lin, 2004; Kuusela & Wolfgang, 2009, Pajic-Lijakovic & Milivojevic, 2014; Peng
et al., 2013). If denoting by Υ the adherent surface of the cytoskeleton, the contact energy takes
the general form

Econ =

∫
Γ

∫
Υ

βΓ βΥ φ(‖xΓ − xΥ‖) dxΓ dxΥ (15)

where φ is the potential of interaction (in Joule/m4) and βΓ, βΥ are dimensionless scalars. The
forces resulting from this energy are calculated considering δxΓ and δxΥ in the positions of the
bilayer and the particles of the cytoskeleton:

δEcon =

∫
Γ

∫
Υ

βΓβΥφ
′(‖xΓ − xΥ‖) xΓ − xΥ

‖xΓ − xΥ‖
·
(
δxΓ − δxΥ

)
dxΓ dxΥ (16)

= −
∫

Γ

f con,Γ(xΓ) · δxΓ dxΓ −
∫

Υ

f con,Υ(xΥ) · δxΥ dxΓ (17)

where f con,Γ(xΓ) is the net force in xΓ produced by interaction with the whole Υ,

f con,Γ(xΓ) = − βΓ

∫
Υ

βΥφ
′(‖xΓ − xΥ‖) xΓ − xΥ

‖xΓ − xΥ‖
dxΥ . (18)

Replacing Γ with Υ we obtain f con,Υ(xΥ). Keeping δxΓ = δxΥ constant, it follows that
∫

Γ
f con,Γ+∫

Υ
f con,Υ = 0, as expected.

SIMULATIONS

We present in this section the simulation of a relaxation process, i.e. starting from a initial
configuration and in absense of external forces we allow the system to goes to the equilibrium
state.

We set a cytoskeleton with 313 nodes and we discretized the bilayer with 4500 nodes. For
the time discretization we adopted a fixed time step ∆ t = 10−5. The setup of parameters is
reported in Table 1.
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Table 1- Setup of parameters.

Value Symbol Description Model
1.0 kB T Energy unit (WLC)

−18.0 kp POW constant (WLC)
−0.08928 p Persistent length (WLC)

0.625 `0 Edge initial length (WLC)
2 n POW exponent (WLC)

1.0 βΓ Bilayer interaction constant (INT)
1.0 βΥ Cyto interaction constant (INT)

6 k Coefficient Lennard-Jones potential (INT)
0.125 R Radius of cyto-sphere (INT)

1.0 µ Viscosity (BIL)
20.0 CH Canham constant (BIL)
79.6 V0 Initial RBC volume (BIL)

In Figure 2 we display a certain time evolution step of the lipidic bilayer and the magnitude
of the curvature. It is plotted also a section of the RBC showing the finite element mesh used.
In the same Figure (below) we report the same results but now including the the cytoskeleton
into the model. The section of the RBC allows to see the cytoskeleton network. It is interesting
to see that the presence of the cytoskelton affects the evolution in terms of distribution of nodes
of the bilayer and of the curvature. Finally, in Figures 3 and 4, we also show the time evolution
of some relevant global quantities, namely, the bending energy, the internal pressure, the area
and enclosed volume for both cases. We can appreciate the influence of the cytoskeleton over
the bilayer comparing the bilayer energy with and without the cytoskeleton attached to it. We
also note some jumps in the area and volume (that are essentially constants). These jumps are
due to the re-meshing process used to keep the mesh distortion under control.

CONCLUSIONS

In this work we have presented a new approach for modeling a single RBC. According to
this, we have motivated the need of a new two-component model for a sigle RBC. We have cou-
pled to the consolidate worm-like-chain approach for the cytoskeleton a continuum model for
the lipid bilayer, based on a viscous liquid-shell model with Canham-Helfrich bending energy.
An original contribution is presented by the introduction of the adhesion forces for reproduc-
ing the attachment of the cytoskeleton nodes to the bilayer integral proteins. We tested the
two-component RBC modelling approach on a simple example of relaxation of the cell.

Understanding better the behaviour of a red blood cell means to give a strong contribution to
the comprehension of life. Thanks to modern technology, the accuracy of mathematical models
can be proven by experimental laboratory tests. Vice versa, mathematical modeling can help to
identify the reasons behind what is physically observed. Our next step is to adapt the code in
order to simulate the fundamental experiments of micropipette aspiration and optical tweezing.
Our deliverable is a software for the “in silico” (or virtual) simulation of RBCs that extends the
range of spatial and temporal scales of current simulators as the OpenRBC code (Tang et al.,
2017) and the implementation in LAMMPS of Fu et al. (2017).
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Lipidic bilayer negleting cytoskeleton and interaction forces.

Lipidic bilayer considering cytoskeleton and interaction forces.

Figure 2- Screenshots of the simulation of the evolution of the RBC in the relaxation process (t = 0.15).

Bilayer energy. Pressure.

Area. Volume.

Figure 3- Simulation of the time evolution of the lipidic bilayer (without cytoskeleton).
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